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Abstract
In this work, an approximate solution of linear second kind integro-differential equations 
of the Volterra and Fredholm types was studied utilizing shifted Chebyshev polynomials 
as basic functions. Additionally, the approximate solution was collocated using standard 
collocation and Chebyshev Gauss Lobatto collocation points, respectively. In terms of 
obtained errors, comparisons were done with the two collocation points. The 
performance of the method was demonstrated numerically in terms of the degree of 
approximation. Nonetheless, it was found that, Chebyshev Gauss-Lobatto collocation 
points exhibit better accuracy than standard collocation points, as can be seen from the 
tables of errors presented.
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1. Introduction

Integro-differential equations represent a category of equations that encompass both 
differential and integral operators. These equations emerge in diverse fields of study such 
as physics, biology, and finance. The act of analytically solving these equations often 
presents considerable challenges, leading to the prevalent utilization of numerical 
methods. Among the various numerical techniques at our disposal, the implementation of 
collocation approximation has demonstrated its effectiveness in addressing integro-
differential equations (Dung, 2021). Within the scope of this project research, our 
emphasis lies in the application of collocation approximation techniques for the 
resolution of integro-differential equations through the utilization of shifted Chebyshev 
polynomials. Collocation approximation involves choosing a set of collocation points in 
the domain of the problem and approximating the solution by a polynomial that satisfies 
the equation at these collocation points. The accuracy of the approximation depends on 
the choice of collocation points and the type of basic functions used. Chebyshev 
polynomials, particularly shifted Chebyshev polynomials, have been widely used as 
basic functions in collocation methods due to their excellent approximation properties 
(Anselmann et al., 2019).

The utilization of collocation approximation techniques for the resolution of integro-
differential equations has garnered considerable attention in recent years. Scholars have 
devised diverse collocation methodologies reliant on distinct categories of basic 
functions, such as Jacobi polynomials (Bhrawy et al., 2016), tau-collocation (Mamadu & 
Njoseh, 2016), and shifted Chebyshev polynomials. These methodologies have been 
effectively employed in tackling integro-differential equations emerging in various 
domains, thereby showcasing their efficacy and versatility.

The use of collocation approximation techniques for solving integro-differential 
equations has gained significant attention in recent years. Researchers have developed 
various collocation methods based on different types of basis functions, such as Jacobi 
polynomials (Bhrawy et al., 2016), tau-collocation (Mamadu & Njoseh, 2016), and 
shifted Chebyshev polynomials. These methods have been successfully applied to solve 
integro-differential equations arising in different domains, demonstrating their 
effectiveness and versatility.

The great work did by the researchers aforementioned motivated us and eventually led to 
the proposal of a numerical approximation method that is efficient and accurate with less 
computational work to obtain an approximate solution of linear second kind volterra and 
fredholm integro-differential equations of the form:
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This paper aimed to explore and evaluate the effectiveness of collocation approximation 
techniques for solving linear secod kind of Volterra and Fredholm integro-differential 
equations using shifted Chebyshev polynomials. Thus,the main objectives are to 
transform the integro-differential equation in equation (1) subject to initial conditions in 
equation  (2) into a system of linear algebraic equations, test the efficiency of the 
collocation points on some numerical examples, and compare the two collocation points 
with each other.

2. BASIC DEFINITIONS 

Definition 2.1:

Integro-Differential Equation (Wazwaz 2011)
Integro-differential equations are mathematical equations that involve both derivatives 
and integrals. They express relationships between a function, its derivatives, and its 
integrals. These equations frequently arise in many scientific fields, including physics, 
biology, and engineering. Solving integro-differential equations is challenging due to 
their inherent complexity and nonlinearity, often requiring advanced mathematical 
techniques such as collocation approximation.

Definition 2.2:
Exact Solution (Tescan, 2009)
A solution is called exact solution if it can be expressed in a closed-form such as a 
polynomial, exponential function, trigonometric function, or the combination of two or 
more of these elementary functions.

Definition 2.3:
Approximate Solution (Sarafyan, 1994)
An approximate solution is an inexact representation of the exact solution that is still close 
enough to be useful, in this work, approximate solutions used is given by:
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Equation (3.7) produces (N– 1) algebraic equations in the (N + 1) unknown constants. 
Two extra equations are formed from the conditions in equation (3.2). Altogether, we now 
have (N+1) algebraic equations in (N + 1) unknown constants. These equations are then 
solved using Maple 18 to have (N+ 1) unknown constants 

3.1.2 Chebyshev Gauss-Lobatto collocation points shifted Chebyshev polynomials 
defined by
In order to discuss this method, we assumed the collocation points of the form

This method is similar to the one we discussed above under section (3.1.2). We have 
(N+1) algebraic linear system of equation (N+1) unknown constants
The (N+1) linear algebraic system of equation is then solved by maple 18 software to 
obtain the unknown constants 

4. Numerical Examples and Results
In this section, we have demonstrated the standard collocation and Chebyshev Gauss 
Lobatto collocation approximation method on the second kind integro-differential 
equations using Chebyshev polynomial as the basis function. The results obtained are 
compared with each other on three problems to test for the effectiveness and efficiency 
of our collocation points via the Maple 18 software.

Numerical Example 1
Consider the integro-differential equation of the form (Olayiwola et al., 2020)

which are substituted back into equation (3.4)

Numerical Example 2
Consider the integro-differential equation of the form (Wazwaz, 2011)
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Numerical Example 3
Consider the integro-differential equation of the form (Wazwaz, 2015)

Remark:
Here, we present the results obtained by solving three examples by the methods discussed 
in chapter four using Shifted Chebyshev polynomial as our basis functions. The following 
acronyms are adopted in the tables below 

SCP: Standard Collocation Points; 

CGLCP: Chebyshev Gauss-Lobatto Collocation Points
We define our Absolute error as;
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Table 1, 2, and 3, show the numerical solution obtained in terms of approximate solution 
and the errors for the linear second kind integro-differential equations of Volterra and 
Fredholm types solved through standard collocation and Chebyshev Gauss Lobatto 
collocation points using shifted Chebyshev polynomial as basis function. We also 
observed from the examples solved that both collocation points converge close enough to 
the exact solution in a view iteration and lower error.
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Conclusion
In this work, collocation approximation techniques for solving integro-differential 
equations via shifted Chebyshev polynomial was employed and observed, however, as 
M increases, the results obtained yield a good approximation of the exact solution 
only in view iterations for all the problems considered (as can be seen in the tables of 
errors). Also, using Standard and Chebyshev Gauss Lobatto collocation point's exhibit 
straightforward and accurate results. In this work, Standard collocation points provide 
more accurate results than Chebyshev Gauss Lobatto Collocation points. Furthermore, 
the entire problem was solved using the MAPLE 18 software.
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